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The analytical properties of the simple cubic lattice Green function
yl
G(t) = —% fff [t — (cos x; + cos x5+ cos x5) ]~ dix; dxy diy
™ 0

are investigated. In particular, it is shown that ¢G(t) can be written in the form
G =[FO, -1 L4 9/¢)1%

where F(a, b; o, 8,7, 0; z) denotes a Heun function. The standard analytic continuation formulae for Heun
functions are then used to derive various expansions for the Green function

G(s) = Gg(s) +iGy(s) = lim+ G(s—ie) (0<s< )
e—0
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584 G.S.JOYCE

about the points s = 0, 1 and 3. From these expansions accurate numerical values of Gy (s) and Gi(s) are
obtained in the range 0 < s < 3, and certain new summation formulae for Heun functions of unit argument
are deduced. Quadratic transformation formulae for the Green function G(¢) are discussed, and a con-
nexion between G(t) and the Lamé-Wangerin differential equation is established. It is also proved that
G(t) can be expressed as a product of two complete elliptic integrals of the first kind. Finally, several
applications of the results are made in lattice statistics.

1. INTRODUCGTION

Recently, there has been considerable interest in the lattice Green function for the simple cubic
lattice (Katsura ef al. 19714, b; Morita & Horiguchi 1971)

_ 1 i dix; dxyday
G(t) = n3fff0 ¢ — (€08 Xy + COS Xy + COS X5) (1.1)

This integral defines a single-valued analytic function G(¢) in the complex f-plane cut along the
real axis from —3 to +3. In most physical applications one usually requires the limiting
behaviour of the Green function (1.1) as ¢ approaches the real axis. It is convenient, therefore,
to introduce the additional definitions

GE(s) = lim G(s +ie) = Gg(s) FiGy(s), (1.2)
e—>0+
where — o0 < 5 < o0. Since the real part Gg(s) and the imaginary part Gy(s) of G—(s) satisfy the
symmetry relations
Gr(—s) = —Gg(s),
r(—9) r(5) } (1.3)

Gi(=s) = +Gy(s),

we shall restrict our attention to the Green function G=(s) with s in the range 0 < s < 00. The
behaviour of G*(s) is readily obtained by using the formula

G*(s) = G—(s)*. (1.4)

It can be shown that the functions G*(s) display branch-point singularities at s = + 1 and
s = +3.

Katsura et al. (1971b) transformed the Green function (1.1) into a Mellin—-Barnes type integral,
and hence derived Taylor series expansions for G*(s) about s = 0, and s = /6 in powers of s2,
and %(s2—5) respectively. In a second paper (Inawashiro, Katsura & Abe 1971) an expansion
for G—(s) was developed about the singular point s = 1, in powers of (s — 1)%. These authors also
showed that the leading-order coefficient in all these expansions could be determined exactly
in terms of complete elliptic integrals of the first kind. However, the higher-order coefficients
were, in general, expressed as infinite series and were not evaluated exactly in terms of standard
functions. Furthermore, the important expansion about the singular point s = 3 was not
discussed.

The main aim of this paper is to give a detailed account of the analytic properties of the lattice
Green function (1.1). In particular, it will be proved in §3 that /G(¢) can be written as the
square of a Heun function (Heun 1889). In §§4 and 5 this basic result and the standard trans-
formation formulae for Heun functions will be used to obtain various expansions for G(s)
abouts = 0,5 = 1ands = 3. Itis shown that the coeflicients in these expansions can, in principle,
all be generated exactly by means of simple recurrence relations.

In §6 a close connexion between the simple cubic lattice Green function and the Lamé-
Wangerin differential equation is established. Certain quadratic transformation formulae for
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ON THE SIMPLE CUBIC LATTICE GREEN FUNCTION 585

G(t) are also derived. In §7 it is proved that the simple cubic lattice Green function can be
evaluated, for arbitrary ¢, as a product of two complete elliptic integrals of the first kind. Some
applications of the results are described in §8.

2. Basic REsSULTS

We begin by considering the closely related lattice Green’s function

_ (3 3y 1 ™ dix; dwydag
P(z) = (E) G(Z) N F*‘”]; 1 —3z(cosxy +cos x5+ COs X3) (2.1)

It is interesting to note that this Green function plays an important role in the theory of random
walks on a simple cubic lattice (Montroll & Weiss 1965). By inspecting the integrand in equation
(2.1) we see that the integral (2.1) represents a single-valued analytic function throughout the

z%-plane cut along the real axis from + 1 to +oo. (It is convenient to consider the z2-plane since
P(—z) = P(2).)

A power series representation for P(z), valid when |z| < 1, may be readily established by
expanding the integrand in (2.1) in powers of z and integrating term by term. We find

P(z) = io‘, a, 22" (|z| < 1), (2.2)
n=0
where a, = 7—7:15 Ji”.w [4(cos &y + cos x5 + cos x5) ]2 dixy dxy dag. (2.3)
0

An explicit expression for the coefficients 4, can be derived from equation (2.8), in terms of a
terminating generalized hypergeometric series. The final result is
1 (%—)n %’ —n, —n;
dn —gﬁmg’Fz 1,1; 4 , (24)
where (b),, = I'(n+5)/I'(b). In the theory of random walks the coeflicient a,, gives the probability
that a random walker will return to his starting-point (not necessarily for the first time) after a

walk of 27 steps on a simple cubic lattice. The number of random walks r,, which return to the

origin after 2 steps is on
Ton = 627,

(2.5)
For large n the behaviour of , is described by the asymptotic expansion (Domb 1954)
1/3)\% 3 13 27 793
™1 (;7_1) [1 _ﬁ-l- 128n2+ 1024n3+ 32768n4+ ] , (2.6)

as n—>00. It follows from this asymptotic formula that the range of validity of (2.2) can be
extended to include all points on the circle |z| = 1. In particular
P() = Y a, (2.7)
n=0
The evaluation of P(1) was first carried out by Watson (1939). His result is
P(1) = 12r-2(18 + 12,/2— 10,/3 — 7,/6) K3
~ 1.516 386 059 151 978, (2.8)

where K, denotes a complete elliptic integral of the first kind with a modulus
= (2-3) (J3—42).
Unfortunately, Watson’s ingenious analysis has not been generalized to the case z # 1.
46-2
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586 G.S.JOYGE

In order to obtain a recurrence relation for the coefficient a,, we now introduce the exponential
probability generating function

E(0) = %fff:exp [$0 (cosxy + cos x5+ cOs x5)] day dix, dixg (2.9)
© 62n
= I 2
néoan(%)!’ |60?] < 0. (2.10)

From equation (2.9) we also have the alternative expression

© 2n
£0)=13(3) = £ a.(3)" (2.11)
3 n=10 3
32n
where d, = (2n)!a“’ (2.12)

and I,(x) is a modified Bessel function of the first kind. Watson (1910) has shown that the
coefficients d,, satisfy the following three-term recurrence relation

16(n+1)%d, ., —4(10n2+10n+3) d,+9d, ; =0 (n > 0), (2.13)

with the initial conditions d, = 1, and d_; = 0. The substituticn of (2.12) in (2.13) yields the
required recurrence relation

36(n+1)3%a,,,—2(2n+1) (1002 +10n+3) a,, +n(4n*—1)a, , =0 (n > 0) (2.14)

with a, = 1, and a_; = 0. We see, therefore, that the number of returns to the origin r,, satisfies
the recurrence relation

(n+1)%5,,0—2(2n+ 1) (10024 107+ 3) 7y, + 36n(4n2 — 1) 75, o =0 (n > 0), (2.15)

with 7, = 1, and r_, = 0. In table 1 is given a list of the numerical values of r,,, which was
generated by using the recurrence relation (2.15).

TABLE 1. NUMBER OF RETURNS TO THE ORIGIN 75, FOR THE SIMPLE CUBIC LATTICE

n Ton n Tan

0 1 8 27770 358 330

1 6 9 842 090 474 940

2 90 10 25 989 269 017 140

3 1 860 11 813 689 707 488 840

4 44 730 12 25 780 447 171 287 900

5 1172 556 13 825 043 888 527 957 000

6 32 496 156 14 26 630 804 377 937 061 000
7 936 369 720 15 865 978 374 333 905 289 360

The recurrence relation (2.14) is of basic importance since it enables us to establish the follow-
ing third-order linear homogencous differential equation for the probability generating function
(2.2):

dspP d2pP

4x2(x—1) (x— 9)3;5 +12x(2x2 — 15x + 9) Tt 3(9x2—44x+12) 3—5+ 3(x—2)P =0, (2.16)

where x = z2. It is readily verified that this differential equation is a Fuchsian equation (Ince
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ON THE SIMPLE CUBIC LATTICE GREEN FUNCTION 587

1927; Poole 1936) with four regular singular points at ¥ = 0, 1,9 and c0. The Riemann P-symbol
(see Ince 1927) associated with the differential equation (2.16) is

01 9 o
00 0 }

: 2.17
Plo 1 1 3 % (2.17)
01 3 1

In this scheme the singular points are placed in the first row with the roots of the corresponding
indicial equations beneath them. (The Riemann P-symbol notation should not be confused with
the Green function P(z).)

For an arbitrary nth order Fuchsian equation with a regular singular point at co and » regular
singular points in the finite x-plane, it can be shown (Ince 1927, p. 371) that the sum of all the
exponents in the Riemannian scheme is an invariant equal to $n(n—1) (v —1). We see directly
from equation (2.17) that the differential equation (2.16) has the correct Fuchsian invariant
of 6.

A differential equation for the Green function G(f) may be obtained by applying the trans-
formation (2.1) to equation (2.16). The final result is

d3G d*G dG

d3+6t( 5) d2+(7t2-—12)—+t0—0 (2.18)

4 2
(t— 102+ 9) 3

This Fuchsian differential equation has five regular singular points in the f-plane at ¢ = + 1,
+ 3 and oo, with a Fuchsian invariant of 9. The Riemann P-symbol associated with equation
(2.18) is

-3 -1 1 3 o
0 0O 0 0 1
P . 2.1
1 1 1 1 1 t (2.19)
1 L 1 1 1
2 2 2 2

3. CoNNEXION WITH HEUN’S DIFFERENTIAL EQUATION

Appell (1880) has shown that, if , and y, are independent solutions of the second-order
differential equation

dx2+f( )_+g( )y =0, (3'1)
then the general solution of the third-order differential equation
df dy del, _
T3/ ) o |2+ )| ot [ 4700 ) + 258y = 0 (3.2)
is y = Ayi+ Byrys+Cy3, (3:3)

where A, B and C are arbitrary constants. The application of this result to the differential
equation (2.16) enables us to write the lattice Green function P(x) in the product form

P(x) = Ayt + By,y, + C, (3.4)
where y; and y, are independent solutions of the second-order differential equation

d¥y [1 1 1 dy 3(x—4)
P [§+2(x—1) ( )]a;c+16x(x—1)(x—9)y=0'

(3.5)
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588 ' G.S.JOYCE

We now introduce the normal form of Heun’s differential equation (Heun 1889; Snow 1952)

d¥y [y 1+a+p—y—-86 & |dy oafix+b _
CW+[;+ x—1 +x—a]a}-c+x(x—1) (x—a)y_ 0 (3.6)

The Riemannian scheme associated with Heun’s equation is

0 1 a o0
Pl O 0 0 a x|. (3.7)
1—y vy+8—a—-p 1-6 p

(In order to provide a complete characterization of equation (3.6) one must give the P-symbol,
and the value of the accessory parameter b.) It is evident from equation (3.6) that the differential
equation (3.5) is a particular case of Heun’s equation witha =4, f =%, y=1,8=13%;a=09,
b = —%. Thus the Riemann P-symbol for equation (3.5) is

01 9 o
Plo 0 0 } « (3.8)
034 2

The solution of equation (3.6) which is regular in the neighbourhood of x = 0, with an
exponent zero, is Heun’s functiont defined by the series

n(@) = Fa,bya B,7,02) = X ns™ (3.9)
n=
where the coeflicients ¢, satisy the recurrence relation
(n+1) (n+y) @ty = {(a+ 1) n* +[y+0—1+(a+f=0)a]n—b}ey —(n—140a) (n—=1+f) ¢,
(n20) (3.10)

with ¢, = 1, and ¢_; = 0. It follows, therefore, that the solution of equation (3.5) which is regular
in the neighbourhood of x = 0, is given by

=" 414 1,4%). (3.11)

The independent second solution y, of equation (3.5) must display a logarithmic singularity at
x = 0, since the roots of the indicial equation at x = 0 are coincident. If these results are applied
to equation (3.4) we obtain the basic formula

P(z) =[F(9, - 14 L, 5 9))% (3.12)

with x = z2 From equations (2.1) and (3.12) we also have
1 F 3.1 3 1. 9 ?
G(t) :'t' 9, -1, pl| - (3'13)

It is interesting to note that the lattice Green function P(z) for the body-centred cubic lattice
can be written as the square of an ,F, hypergeometric function (Joyce 19714)

P(2)pee = [oF1(1: 45 152%) % (3.14)

In the following sections we shall use equations (3.12) and (3.13) to investigate the analytic
properties of P(z) and G(¢).

1 In this paper we shall adopt the Heun function notation used by Snow (1952).
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ON THE SIMPLE CUBIC LATTICE GREEN FUNCTION 589

4. TRANSFORMATION FORMULAE FOR P(2)

We shall discuss in this section the behaviour of P(z) in the neighbourhood of the singular

points x = 1, 9 and co.
(a) Analytic continuation about x = 1

The application of a standard transformation formula (see Snow (1952) p. 123, equation (20))
to the Heun function in equation (3.12) enables us to write

[P<Z)]% = AF('"S:iQG'; %a% % % 1"x)+B(1'—x)%F( 3T'§’%$ 4 ?:ﬁ’l_ ) (4'1)

where 4 and B are constants. Fortunately, the joining factors A and B can be calculated exactly.
The joining factor 4 is readily determined by applying Watson’s result (2.8) to (4.1). We find

= [P(1)]} = (24/3/=) (18+12,/2—10,/3 —7./6)} K, (4.2)

To determine the joining factor B we apply Darboux’s theorem (Darboux 18%8) to the singular
part of the square of equation (4.1). This procedure yields the asymptotic formula

a, ~ — B[P(1)[x]tn~}, as n-—>o0. (4.3)
If we compare this result with the asymptotic expansion (2.6) we see that
B = —(3[4m) [3/P(1)]*. (4.4)

The substitution of (4.2) and (4.4) in equation (4.1) leads to the important analytic continuation
formula

P(z) = P() [F(=8, ;1 % 3,35 1 —%)]?
343 1 9.1 311 69.5 3 3 1.
—_Q_TE— (1—%) F("S,TE; I>Zs§,§;1—x)F("8,T'€:IaI:§: 2,1-—x), (4'5>
where |arg (1—x)| < =, and |argx| < .

We can now use the Taylor series (3.9) and the recurrence relation (3.10) to expand the analytic
continuation (4.5) in the form

PE) = % [P( ) BO 4 —

n=0

27 3\/3 ©
1) 2\yn _ ON© (1 _ ,2\% _ 2
o 0| =2 SR - £ - o)
where |1—22| < 1, and |arg (1 —2%)| < ©. The exact values of the coefficients B, B{) and C,
are listed in table 2 for n < 8. We give below the numerical values of the leading order terms in
the expansion (4.6):

P(z) = 1.516 386 059 151 978—%‘/; (1— 223

+0.539 238 175 081 581 (1 — 22) —§4—*7/t3(1 —z2E4 . (4.7)

The expansions (4.6) and (4.7) are of considerable importance in the theory of random walks

(Montroll & Weiss 1965; Domb & Joyce 1972), and in the theories of ferromagnetism such as

the spherical model (Berlin & Kac 1952; Joyce 19724). A comparison of equation (4.7) with the

earlier calculations of Montroll & Weiss (1965) indicates that the coefficient of 1 — z2 obtained
by these authors is in error.

Next we apply the method of Frobenius (Ince 1927; Poole 1936) to the regular singular point

x = 1 of the differential equation (2.16), and hence derive a general series solution of (2.16) in
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590 G.S.JOYCE

TasLe 2. Corrricients B, B anp C, IN THE EXPANSION (4.6)

OF

B(o) B(l) Cn
n n
0 1 0 1
9 1
2 — 1 -
32 2
. 175 ' 23 7
- 1 024 32 20
5 2025 1477 19
16 384 2560 70
. 102 235 555 273 25
1 048 576 1146 880 112
5 1 356 047 38 466 649 67
16 777 216 91 750 400 352
6 37 160 123 1711 814 393 205
536 870 912 4 613 734 400 1232
. 6771 931 925 48 275 151 899 3389
111 669 149 696 144 686 710 784 22 880
o 772 428 184 055 28 127 429 172 349 24 469
14 293 651 161 088 92 599 494 901 760 183 040
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powers of 1 —x. If this series solution is compared with the expansion (4.6) we obtain the following
four-term recurrence relations for the coefficients B{Y, B and C,,:

16n(n+1) (2n+1) BE,, —n(60n2 + 9) BY

+3(2n—1)3BD 4+ (n—1) (2n—-1) (2n—3)BH, =0 (n > 1) (4.8)
and 8(n+1) (2n+1) (2n+38)C,, ,—6(2n+1) (bn*+5n+2) C,
+24n3C, _ +2n(n—1) (2n—1)C,_, =0 (n = 0), (4.9)

where 7 = 0, 1. The initial conditions for these recurrence relations are

BO =1, BP=4g&, i=0
0 ’ 1 32> a} (4‘1())

BP =0, BP=1, i=1,
with C, = 1. The recurrence relations (4.8) and (4.9) provide us with a simple independent
method for generating the coeflicients in table 2.

Further analytic continuations for P(z) about x = 1 can be established using the transformation
formulae derived by Snow (1952). For example, it can be shown that (see Snow (1952), p. 121,
equation (17))

PRIl . 1—x
[P = EE e F(o, —thsb 43 birr)

(1 1—%x

3J3(8/9 l—x) ( 7.8 5 3 1. l—x)
Tie 0 4.1
41‘C[P( )]%(1__%)%}7 9, 16242 %> :2:1_%% . ( 1)
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ON THE SIMPLE CUBIC LATTICE GREEN FUNCTION 591
The application of the Euler-type theorem (Snow >1952)

o (btaay),

; z
-1’ —1 ,“,7+3—ﬂ,7,8;;:1] (4.12)

F(d,b; o‘aﬁ>7: 832) =E(1_Z)—aF[

to the Heun functions in (4.11) yields the additional relation

9(x—1 -
XF(%ﬂ _T'7§§8'; %3 %3 33 %> ( Sx )) (4.13)
This result is valid throughout the x-plane cut along the real axis from —oo to 0, and + 1 to + co.

(b) Analytic continuation about x = 9
The behaviour of P(z) in the neighbourhood of x = 9 may be established by applying a
suitable transformation formula (see Snow (1952), p. 125, equation (24)) to the Heun function
in equation (3.12). It is found that

[P = G- 8,251 4,4, 155

+3@(2) G r (-8 1118550, (4.19)
where x is either in the upper or lower half of the x-plane cut along the real axis from — oo to
+00, and 4 and B are constants which take different values in the upper and lower half of the
x-plane. For convenience, we shall suppose that x is in the upper half of the cut x-plane.

In order to calculate the joining factors 4 and B we now use equations (4.14), (2.1) and (1.2)
to determine the behaviour of G—(s) in the neighbourhood of s = 1. This procedure gives

G~(s) = A%+ 5 AB(s*— 1) + O(s2—1). (4.15)

Fortunately, Inawashiro ¢t al. (1971) have evaluated the leading-order coefficients in this
expansion exactly. Their result is

G—(s) = (1+iy2) G (1) — (3i/27) (s2— 1)+ O(s2— 1), (4.16)
where Gr(1) = n[I(@) (D)2 (4.17)
= (1-27%) (2/m)?[K((242 - 2)1)]%, (4.18)

and K (k) denotes a complete elliptic integral of the first kind. The following alternative expression
for Gy(1) is also of interest:
Ggr(1) = 2_%1)( *1)nees (4.19)

where P(z);,. is the lattice Green function for the body-centred cubic lattice.}

1 The relation (4.19) may be derived by comparing equation (4.17) with equation (2.48) in Joyce (19714).

47 Vol. 273. A.
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592 G.S.JOYCE

Exact formulae for the constants 4 and B are now readily obtained by comparing (4.15) with
(4.16). The substitution of these formulae in equation (4.14) finally yields the complete analytic
continuation

P(z) = ({;x)“%{(l +14/2) Gg(1) [F(—S»T%?i“’ b %’%;x_g)r

3(iy2—1) (9 —x O\ 72
+16TEZGR<1)( x )[F(_S,%%;%,%’%,%; P )]

3i (9—x\% x—9 ‘ x—9
1 e R CUESTR R R R P BT R Pl | RECED

where # is in the upper half of the cut x-plane.

Further analytic continuations for P(z) about x = 9 can be derived using the appropriate
transformation formulae given by Snow (1952). For example, it can be shown that (see Snow
(1952), p. 124, equation (22))

. ; 9—x\2
P() = (1+iy2) Gn() | F(8 - # 1. 1. 1.1,75 |

(iy2—1) 90—\ T

+m(9—x) F %:_'}‘1“%;%>72s%>1s_§“
i tFp(e —25.13 1 _9—xF9 115.3 5 3 1. 4.91

——(Q—x) 8 T 128 4 D> 2:1:"'— ® TIAZH D2 T g | ( . )
27 8 8

where ¥ is in the upper half of the cut x-plane.

(¢) Analytic continuation about x = oo
The behaviour of P(z) about the point at infinity is readily determined by using the relation
(see Snow (1952), p. 123, equation (21a))
[P(Z)]% = A(xe—in)—%F<9’ - %3 %’ 'i" %’ %; 9/x) + B(xe_ﬁr)_%F<9> _”2‘§1'; 2%> 72‘: %> %’ 9/,96), (4'22)

where « is in the x-plane cut along the real axis from 0 to co with 0 < argx < 2=, and 4 and B
are constants. From this relation and equations (2.1) and (1.2) we find that

G—(s) = $4%1—2A4ABs+ O(s?%). (4.23)
However, from the work of Katsura et al. (19715) we have the alternative exact expansion
~(5) = P2 2
G—(s) = G1(0) 1+n~/3s+0(5 )s (4.24)
where G1(0) = 3[I'(})]6/2%" =4, (4.25)
2
= 5 KG2+y3)H) K2 -3)), ‘ (4.26)

=M[K((~/3‘1))]2, (4.27)

7 2,/2
The following additional expression for G(0) is also of interest:
G1(0) = 3P(1)1ccs (4.28)

where P(z);. is the lattice Green function for the face-centred cubic lattice (Montroll & Weiss
1965; Joyce 19715).
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ON THE SIMPLE CUBIC LATTICE GREEN FUNCTION 593

We can now calculate the joining factors 4 and B in equation (4.22) by comparing equa-
tion (4.23) with equation (4.24). This procedure finally yields the complete analytic continuation

P(z) = 3Gy(0) (xe™™)H[F(9, —§; 1,4, 5, 3; 9/%)]°

9
+;E'2-G'I—<_® (xe—i“)"%[F(Q, _'2—81‘; %1 %3 %’ %; 9/x)]2

64/3
_'—;/T_ (xe_m)_lF<9: - %) %3 %3 %) %’ 9/x) F(Q, _'2§1a %’ %9 %) %: 9/x),

where 0 < argx < 2n. We see from (4.29) that P(z) displays a branch-point singularity at
x = o0,

5. ExXPANSIONS FOR Gy(s) AND Gy(s)

In this section the general analytic continuation formulae obtained in §4 will be used to
derive various expansions for the real and imaginary parts of the Green function G—(s).

(a) Expansions about s = 0

In order to develop expansions for Gg(s) and Gy(s) about s = 0, we substitute ¥ = 9/t2 in
equation (4.29) and apply the relations (2.1) and (1.2). This procedure gives

25
GR(‘Y) = mF(g: _%; i) %) %’ %: sz)F(Q’ _’%1'; 7%: '2’ %3 %: 52): (5.1)
32
and i) = GO IFO, ~k bbb BAP - (RO~ RLEAE, (62

TaBLE 3. CoEerriciENTs D, D’ AND E,, IN THE EXPANSION (5.4) AND (5.3)

A
—%
P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Di?) D(l) E‘ﬂ
n
0 1 0 1
1 ! 1 2
' 18 9
, " 7 8
648 18 81
5 19 5 496
2160 24 8 505
. 7861 3 635 9 088
1 399 680 27 216 229 635
s 301 259 557 485 12 032
75 582 720 5 878 656 413 343
6 451 526 509 7 596 391 12 004 352
149 653 785 600 105 815 808 531 972 441
. 6 427 914 623 19 681 954 039 4139 008
2 693 768 140 800 346 652 587 008 227 988 189
o 16 794 274 237 32 139 541 115 51 347 456

8 620 058 050 560

693 305 174 016

3419 822 835
47-2
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594 G.S.JOYCE

where —1 < s < 1. We can now use the Heun function series (3.9) and the recurrence relation
(3.10) to expand equations (5.1) and (5.2) in the form

oo}

G ) ¢3 £ B, (5.3)
DM
and Gis) = %, [GI(O) pw— 37?25”?(”@] sn, (5.4)

where —1 < s < 1. The coefficients D, DI and E,, are listed in table 3 for n < 8.

Recurrence relations for the coefficients D, DIV and E,, are readily obtained by applying the
method of Frobenius to the ordinary point ¢ = 0 of the differential equation (2.18). The final
results are given below:

36n(n+1) (2n+1) DS, —4n(20n2+1) D@ + (20— 1)3DP; =0 (n > 1;i=0,1) (5.5)
and

9(n+1) (2n+1) (2n+3)E, ., —2(2n+1) (10n2+ 10n+3) E, +4n3E, ; =0 (n>0) (5.6)

with the initial conditions
DO =1, DV =1/18 (i =0), }
D=0, DP=1  (i=1)

and E, = 1. It is evident that the combination of these recurrence relations with equations (5.3)
and (5.4) provides us with a simple accurate procedure for calculating the numerical values of
Gg(s) and G;(s) in the range 0 < 52 < 1. (The scheme is rapidly convergent for s* < }.)

A comparison of the expansions (5.3) and (5.4) with the corresponding double series derived
by Katsura et al. (1971) yields the following apparently new summation formulae:

(5.7)

I[

3 [F(m+%—)]3(%)m. — A )T+ E, (5.8)

and
& [Mm+nt+DPG

22,20 (man)i(m] ))m[ By (m+n+3)+24(m+1)+y(m+n+1)+Ind]

DY |
— 4npl 1 0y __ __““n
4\ I(n+3) [GI(O) DY 37:201(0)]' (5.9)

(b) Expansions about s = 1

The behaviour of G—(s) in the neighbourhood of s = 1 may be determined by substituting
x = 9/#2 in the analytic continuation (4.20). It is found that

G—(s) = GRr(s) +iGy(s) = (1+14/2) GR(1) [F(—8,{: 1 1, 4, 4,1 —59))?

L () (P8, 853, 18 b1 -]
—%(ﬂ—1>%F<—8,T%;%,i,%,%;1—s%F(—&%%g,%,%,%;l—s2>, (5.10)
where 0 < 52 < 9, with s > 0, and
R Ay (5.11)
= —i(1-s2t (s2<1).
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ON THE SIMPLE CUBIC LATTICE GREEN FUNCTION 595

We can now use the Heun function series (3.9) and the recurrence relation (3.10) to expand
(5.10) in the form

6-(5) = Gals) +iG1ls) = £ | (1+iy2) Ga(1) UP+ 13“6(?15:‘”“6411;/(12; U] (1-5r

_ 3i
27

(2= 0} 3 V(1 —s)n, (5.12)
n=0

where |1—s?| < 1 and s > 0. A list of the coefficients U, UYL and V,, is given in table 4.

TasLE 4. Coerricients UQ, U’ AND V, IN THE EXPANSION (5.12)

n U,‘,") U7(L1) Vn
0 1 0 1
1 1
1 3 1 8
9 15 29 1
1 024 96 12
3 637 785 1
81 920 4 608 20
4 186 161 32 515 173
36 700 160 294 912 5 040
5 2129 373 372 295 563
587 202 560 4718 592 22 176
6 259 064 949 298 904 291 73
93 952 409 600 4 982 833 152 3 696
7 42 740 829 483 3793 413 169 41
19 542 101 196 800 79 725 330 432 2 574
8 6 266 337 923 043 132 419 161 225 369 581
3 501 944 534 466 560 3 401 614 098 432 28 005 120

In order to establish recurrence relations for the coeflicients in table 4 we transform the
independent variable ¢ in the differential equation (2.18) to # = (1—¢%) and apply the method
of Frobenius about the regular singular point ¢ = 0. This procedure yields the recurrence
relations

32n(n+1) 2n+1) UP, —n(66n*+2) UP — (2n—1)3UP, =0 (n>1;i=0,1) (5.13)
and 4(n+1) (2n+1) 2n+3)V,\y— 20+ 1) (T2 +Tn+2)V,,—20%, ;=0 (n>0), (5.14)

with the initial conditions

UQ =1, U®=1/32 (i }
U =0, UP=1 i =1),

Il

I
=
=

(5.15)

and Jj = 1. These recurrence relations and expansions (5.12) provide us with a simple rapidly
convergent scheme for calculating G (s) and Gy(s) in the range + < s> < 3 (s > 0).
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596 G.S.JOYCE

An alternative formula for G-(s) about s = 1 may be derived from the analytic continuation
(4.21). We find

sG=(s) = (1+142) GrR() [F(§; — s b 8 3, 1;0)]°

(iy2-1)
+m o[F@ — 15555 1;0)]°
1 2
\/ wéF 1zsa 4> 4’ 2a1 w)F(s, _‘%‘85‘3 ?2"715;’%’1;(‘))’ (5-16)
where w = 9(s2—1)/8s%, (5.17)

and 0 <52 < 9 (s> 0). (When 0 <s < 1 the square root w} should be replaced by —i|w|}.)
From this basic formula and the series (3.9) we can now obtain the expansion

~ (i4/2 iJ2 . 2 N
sG(s) = Z 0[(1+1J2 Gr(1) Y0+ iGR(U Y(l)} —*;/-w%ngoznw , (5.18)

provided that % < s2 < 9 (s > 0). The coefficients Y0, YV and Z,, are listed in table 5. From the
numerical point of view this alternative expansion about s = 1 is particularly important since
it converges fairly rapidly in the extended range $ < s> < 3 (s > 0).

TasLE 5. Coerricients YO, Y AND Z,, IN THE EXPANSION (5.18)

n Yo Yo Z,
1 0 1
2
1 5 { 20
12 27
) 13 115 16
48 108 27
5 71721 5 945 1792
38 880 5 832 3 645
. 201 461 132 895 172 288
1 306 368 139 968 413 343
3 539 561 6619 375 4 891 648
° 4 354 560 7558 272 13 640 319
6 718 530 527 7 226 561 965 12763 136
7 054 387 200 8 979 227 136 40 920 957
. 1 338 333 359 4 442 038 075 187 105 280
15 721 205 760 5 986 151 424 683 964 567

Finally, we note that the coefficients Y?, YV and Z,, satisfy the following recurrence relations:

162n(n+1) (2n+1) YO, — 45n(20n2 + 3) Y + 8(2n— 1) (52n% — 52n + 21) YD,
—64(n—1) (2n—1) (2n—-3) YDy =0 (n>1;i=0,1) (5.19)
and 81(n+1) (2n+1) (2n+3)Z, 1 —90(2n+1) (bn®+5n+2) Z,
+64n(13n2+2) Z, ,—128n(n—1) (2n—1)Z, , =0 (n>10), (5.20)
with the initial conditions

YO = 1 Y(°)=5, .20’
0 > 1 12 (Z ) } (5.21)

YO =0, YW=1, (i=1),]

Il

and Z, = 1.
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ON THE SIMPLE CGUBIC LATTICE GREEN FUNCTION 597

(¢) Expansions about s = 3 and s = oo

For the case s = 3 we use the analytic continuation (4.13) and equations (2.1) and (1.2) to
obtain the formula

, . 9 —52\12
6-(9) = Gule) +iG:(s) = 4P(1) [ (3 —sdss b b 1257 )]

_ =) Tpfs _25.5 83 1. 97|
167:2]3(1) 8 128> 4> 4522 )

9 —s2
s O (8 b b b BT

where 1 < s < 00, and

From this result we can now derive the following expansion about s = 3:

[ee)

6-(5) = 3 4P Wi - 2:21;?(1)] (355) 5= S0- 5 (50) 29

n=0 n=0

where 1 < s2 < 17 (s > 0). A list of the coefficients WQ, W and X, is given in table 6. The
expansion (5.24) provides us with a fairly rapidly convergent scheme for calculating Gy (s) and
Gy(s) in the range 3 < s* < 15 (s > 0). (It should be noted that the imaginary part Gy(s) is
equal to zero for all s > 3.)

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

4074 936 532 992

670 448 959 488

TaBLE 6. CoerrFIcIENTS WO, W AND X,, IN THE EXPANSION (5.24)
W W X,
0 1 0 1
7 4
1 — =
36 1 9
9 127 25 112
1296 36 405
485 559 1 664
7776 1080 8 505
24 145 221 021 4 864
559 872 544 320 32 805
1 007 881 48 460 849 533 504
30 233 088 146 966 400 4 546 773
28 520 107 2 281 896 119 3915776
1088 391 168 8 314 099 200 40 920 957
5403 016 003 1706 616 756 923 90 963 968
254 683 533 312 7 333 035 494 400 1139 940 945
71 572 670 015 134 250 885 145 231 538 688

3419 822 835
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598 G.S.JOYCE

The recurrence relations for the coeflicients W, W and X,, are given below:
18n(n+1) (2n+1) W, —n(68n2+17) W,‘f)+4(2h— 1B3WH, =0 (nz1;i=0,1) (5.25)
and
9n+1)(2n+1) (2n+3) X, —2(2n+1) (1702 +1Tn+6) X, +3223X, ;=0 (n>0), (5.26)

with the initial conditions
WO =1, WO =1

§
WP =0, Wp=1

!
=

(7

(¢
and X, = 1.
An expansion for G—(s) about s = co may be obtained directly from equation (3.13). We find

It

)’} (5.27)

1),

G(5) = Gnls) = 57 3 an (967" (5.28)

where the coefficients a, satisfy the 3-term recurrence relation (2.14), and.9 < s* < co. This
expansion converges fairly rapidly provided that 15 < s% < co.

(d) Numerical evaluation of Gy (s) and Gy(s)

Expansions (5.3), (5.4), (5.12), (5.18), (5.24) and (5.28) have been used to construct a com-
bined subroutine for the numerical evaluation of Gy(s) and Gy(s) in the range 0 < s < c0. A
short tabulation of G (s) and Gy(s) for 0 < s < 31is presented in the appendix.t Since this scheme
does not involve double series or numerical integration it is considerably simpler than any pro-
posed previously (Katsura et al. 1971 6; Morita & Horiguchi 1971; Jelitto 1969); (for a review of
earlier methods see Katsura ¢t al. 19714).

6. RELATED RESULTS
(a) Heun function summation formulae
In the theory of the /| (a, b;¢c; z) hypergeometric function the summation formula

Fi(abi6;1) = pOT ) (6.1)

is of considerable importance. Unfortunately, a general summation formula does not appear to
be known for the Heun function F(a, b;a, f,7,d;z) with unit argument. However, we shall
now show that the analytic continuations given in the previous section can be used to derive
F(1) summation formulae for particular values of a, b; e, 8,7y, 0.

We first substitute s = 1 in equations (5.1) and (5.2), and solve these equations for the two

F(1) Heun functions. The application of the relations Gy(1) = 4/2Gy(1), (4.18) and (4.27) to
the resulting expressions then yields the following summatlon formulaef:
F(ga_%;iai‘a%aéa 2/3 \/3+‘/2 1+\/2 %K(‘/2 /K( 2«/2 (6'2)

3—1
and  F(9, ~35 55,5 151) = (6h2/) (J3—y2) (1+y2)HK(J21) K(“W;) (6.3)
t A more extensive tabulation of Gy (s) and Gy(s) is currently being prepared in collaboration \Mth] A. Webb.
1 In order to simplify the modulus of the elliptic integral in equation (4.18) we have also used the relation

K((2y2-2)}) = y2K(y2—1).
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ON THE SIMPLE CUBIC LATTICE GREEN FUNCTION 599

If we set s = 0 in equation (5.10) and proceed in a similar manner we find that

F(=8, i b b3 1) = (08) (V3+y2) (L g2 K (S0 [R(2-0), (6)

and (=813 0. 431) = 63(8m) (32 (142 KG2- D K (). (69)

Further /(1) summation formulae are readily obtained from equations (5.16) and (5.22)
with s = 3 and s = 1 respectively. The final results are given below:

3
Fg, — bbb b b5 =L (14y3) (A8, — s L1 3, 1 )]

= 2—% (1+4/2)"2(1+4/3)F (18 +12,/2—10,/3—7,/6)~%
K(J2-1)

* K(@=V3] (Y3—v2)) (66)
and
F(%’ _T72§§; %9 %a %’ %9 1) = 3_%F(8’ i%gb %9 Z> 2 1’ 1)
= (8/3/m2Y) (14 4/2) (1 +4/3)3(18 4 12,/2— 10,/3—7,/6)}
x K(y/2—1) K((2—4/3) (43 —4/2)). (6.7)

(b) Quadratic transformations

Most of the Heun functions which occur in the previous sections satisfy the conditions
vy=a+f and d=4%.

Under these circumstances the Heun function F(a, b; a, #, v, 8; z)'is known to undergo quadratic
transformations (Snow 1952). For example, it can be shown that (see Snow (1952), p. 126,
equation (27a))

= (1_%’51)&}?(%3 ‘%;%9 19 13 %; xl)’ (68)
where x = F4+dr— 51 —x) (1-1x)t (6.9)

Next we apply the Euler-type transformation (4.12) to the second Heun function in (6.8).
This procedure gives

[P = (1—§x) (1) F(4, —§5 8,4, 1, 15 00), (6.10)

where x, = x,/(x, —1). After carrying out a further quadratic transformation on the Heun
function (6.10), we finally obtain the following biquadratic transformation formula:

[P} = (1= a)t (1—2)H (1= §ue) F(§, — 351, 1,1, 15 x5), (6.11)
where Xy = 3+ 4a, —F(1 —x) ¥ (1 —1u,)2. (6.12)

Quadratic transformations may also be derived in a similar manner for the Heun functions
Fla,b; %, 1,1, %;x) and F(a,b'; %, %, %, 4; x) which occur in §§4 and 5.

We have so far represented the various solutions of Heun’s differential equation (3.6) by
means of power series. However, Erdélyi (1942, 1944) has developed an alternative scheme in

48 Vol. 273. A.
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600 G.S.JOYCE

which the solutions of (3.6) are expanded as a series of hypergeometric functions. The applica-
tion of Erdélyi’s results to the basic Heun function in equation (3.12) yields the expansion

[P()]F = 3 cn(ba)"oFaln+a,n+ 3520+, (6.13)

where the coefficients ¢,, satisfy the recurrence relation
36(n+1)%, .1 +2(28n2+ 14n+3) ¢, +9(2n—1)%,_; = 0, (6.14)

with ¢y = 1, ¢c_; = 0 and n > 0. A considerable simplification of this expansion can be achieved
by using the standard quadratic transformation formula

JFy(a, 030 +b+43%) = oFi[2a, 2630+ b+ 33— B(1—)H], (6.15)
. < 1—(1—x)¥)
We find [P(z)]F = [3+3(1 —x)’%]—%ngocn LTEI—_——;;%] , (6.16)

provided that |1 — (1 —x)¥| < |14 (1—x)3|.

(¢) Lamé-Wangerin equation
We shall now discuss the connexion between the simple cubic lattice Green’s function and the
Lamé-Wangerin differential equation (Snow 1952)

_dy it 1 1 (dy [b+iG-m)x]
Lm(w:a”ﬁ“ﬁ{} x—1 x—a](‘ﬂc-‘_ x(x—l)(x—a)y_o’ (6.17)

where m is an integer. This differential equation is a particular case of Heun’s equation (3.6)
witha = 1 +1im, f = } —Imand y = § = }, and has a general series solution about ¥ = 0 which
can be written in the form

y(x) = AF(a,b; 3 +3m, § —m, 4, §;%) + Bt Fla, b—1(a+1); +dm, § —4m, §, §;#]. (6.18)

We see from equation (6.18) that the Heun functions which occur in the basic formulae (5.1),
(5.2), (5.10) and (5.22) are all essentially solutions of the Lamé-Wangerin Ly(y) = 0. It may
also be readily verified, by using equation (4.22), that the transformed function

$(0) = (HHPEE (2 = 9/0) (6.19)

satisfies the Lamé-Wangerin equation L,(¢) = 0, with a = 9, b = —§ and x = 6. Finally, we
note that the application of a quadratic transformation to (6.18) enables one to solve the Lamé—
Wangerin equation in finite form, providing m & 0 (Snow 1952).

7. EvaLuaTioN OF P(z) AND G(f) IN TERMS OF ELLIPTIC INTEGRALS
(a) General results

It has been suggested by several authors (Katsura et al. 19715; Iwata 1969) that the simple
cubic lattice Green function can be expressed as a product of two complete elliptic integrals.
The main purpose in this section is to prove that such a product form does in fact exist.

We begin by considering the face-centred cubic lattice Green function (Montroll & Weiss

1965)
P(2)gee — IJ‘ J'“ dox; dxydag

73 f o 1 —%z(cos x; cos x, + COS X5 COS g + COS X5 COS Xy ) ©

(7.1)
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ON THE SIMPLE CUBIC LATTICE GREEN FUNCTION 601

For this Green function the following product formula has been derived by Iwata (1969), and
independently by the present author (Joyce 19715):

P(2)gec = (12[7?) (3+2) 1K (k) K(k_), (7.2)

and K(k) is the complete elliptic integral of the first kind with modulus £. More recently, it has
also been shown that (G. S. Joyce, unpublished work)

P<Z)fcc = [F(_ 3> 0> %9 1’ 1’ 1;2)]2, (74)

where F(a, by, 8,7, d; z) denotes a Heun function.
The standard linear transformation formulae

; . Doy z\~ 1 b+ay\. Lz
r(a>bsasﬁa7aa>z)—(1—5) FI:'I'__a'a"(T_—;)ao‘,l'*’a_aa'y,1+a+13_7—83'z‘__a']s (7‘5)

and F(a,b;0,f,7,0;2) =F(é,g;a,ﬁ,%1+a+ﬂ~7—3;§), (7.6)

are next applied successively to the Heun function in equation (7.4). This procedure yields the
alternative expression

4z \]2
P(2)gee = 3(3+2)" [F(4, ~BLL, 1"%‘;372)] . (7.7)

If the substitution z = 3%/(4 —7) is made in equations (7.2) and (7.7), we obtain the important
relation

[F(4’> - 2L: 2 %: 1> %a 77)]2 = 411:'“2K(k+) K(k—)> (78)
where By =%t im(4—mi—}(2-n) (1-k (7.9)

(It is interesting to note that the expression (7.8) with 9 = 22 is just the lattice Green function
P(z) for the diamond lattice.)

The required product form for the simple cubic lattice Green function is now readily estab-
lished by comparing equation (7.8) with the quadratic transformation formula (6.10). We give
the final result below:¥

P(2)se = (1 §x)} (1 —x,) 72(2/m) 2K (k) K(k_), (7.10)

where R = 3 by(d—x)b— 22— xy) (1 —xo)h, (7.11)
o= h+d2 - (11— (1§24, (7.12)

and Xy = 2, (%, — 1). (7.13)

The corresponding expression for the Green function G(f) may be obtained from this result by
using the relation

G(t) =t71P(2)sc (z = 3[t). (7.14)

T The product formula (7.10) was first given without detailed proof in Joyce (1972 b).
48-2
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(b) Special cases

We can check the validity of equation (7.10) by evaluating it for particular values of z2.
When z% = 1 we find that

P(1)sc = (642/n?) K(k,) K(k_), (7.15)
where B = —3(24/8—14,/6) & —2.4567 9568, (7.16)
R = —1(2{3—1—-.6) x —0.0073 0594.} '

Next we apply the standard transformation formula (Erdélyi e al. 1953)

(2/m) K(k) = oF3 (3,35 1;47)
= (1—k2)1,F (%, 55 1; k2[k2 — 1) ’ (7.17)
to the elliptic integrals in (7.15). This procedure yields
P(1)ge = (124/2/7?) (2—4/3) K(k,) K(k_), (7.18)
where k3 = g—jz;—iiﬁ = (2—4/3)2(y3£4/2)% (7.19)
If the relation K(ky) = (3/2)¥(1+k_) K(k.) (7.20)

is substituted in equation (7.18) we finally obtain
P(1)ge = (12/n?) (18 +12,/2—10./3 —17,/6) [K(k_)]2, (7.21)

where £_ = (2—./3) (/3—4/2). This result is in complete agreement with that obtained pre-
viously by Watson (1939).

The Green function P(z)sc = P(z2) 4 is a single-valued analytic function in the z2-plane cut
along the real axis from +1 to +o0. In order to evaluate (7.10) along the edges of the branch
cut we must replace z2 by z2 + ie, and use the formula

[1-(Exie)]t = Fi(f—11ie)}, (7.22)
where 1 < § < 00, and € 2 0. For the special case z2 = 9 + ie a considerable simplification occurs,

and (7.10) reduces to B
' lim P(9 tie)se = Gg(1) +iG(1)

o = i(2y2ft) K(k) lim K(k), (7.23)
where Fo=3(2+1)Fid,)
B o= —3(J2-1). (7.24)

The application of standard transformation formulae to the elliptic integrals in equation (7.23)
enables one to write

lim K(k,) =42(J2-1)}K(J2—1) (J2F1i), (7.25)
TR = y2(y2— DEK(J2—1). (7.26)
We now substitute these equations in (7.23), and use the relation
J2K(J2—1) = K((24/2—2)}). (7.27)
In this manner we obtain
Gr(1) = $(2—42) (2/=)[K((2y2 - 2)})]%, (7.28)
Gi(1) = \J2Gg(1). (7.29)

These results for Gy (1) and Gy(1) agree with those derived by Katsura et al. (19710).
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The evaluation of (7.10) for the special case z? = (2) +ie is rather more complicated. After
some tedious manipulations we find that

hm P(2 +ie) = /5[Gr(y/5) +1G1(y/5)]
0+

= $4/5(1 £1) (2/=*) K(k_) K(£,), (7.30)
where K = 3Fi(/5+2)h) (7.31)
B =1 (J5-2). ]
It is possible to write the elliptic integral K(£,) in the alternative form?
K(ky) = 3(y5—2)3[(1F1) K(KL) + (1 £1) K(£)], (7.32)

where £_ is the modulus complementary to £_. If equation (7.32) is substituted in (7.30) we
obtain
Gr(y5) = $(y5—2)} (2/m)*K (k) K(K), (7.33)
Gi(y5) = 3(J5—2)} (2/m)*[K (k_)]* (7.34)

These expressions are in agreement with those derived by Katsura et al. (19715).
The behaviour of P(z? + ie) as z - 400 may be readily established from the general formula
(7.10). It is found that

lim P(z% +ic) = +i(3[z) (2/n2) K(k_) K(k_), (7.35)
€0+
as z—> oo, where B = 1(2—3). (7.36)
Hence, we have Gy(0) = (2/n?) K(k_) K(k_), _ (7.37)

with G (0) = 0. This result, which was first derived by Katsura ef al. (19716), provides us with
a further check on equation (7.10).

Finally, we note that equation (7.10) is particularly convenient for investigating the behaviour
of P(z) along the imaginary z-axis.

8. APPLICATIONS

In this section we shall briefly discuss some applications of the above results in lattice statistics.

(a) Spin-wave theory
According to ideal spin-wave theory (Mattis 1965) the relative magnetization of the general
spin § Heisenberg model for the simple cubic lattice is given by

M(T)[M(0)] = 1 - $-0(a), (8.1)

where == f ffo exg)EZ::dexR— 3 (8.2)
e(%) = 1 —4(cosx; + cos x5 + COS X3), (8.3)

and o= 6JSlky T. (8.4)

1 The relation (7.32) may be proved by using vanous quadratic transformatxon formulae for hypergeometric
functions. : ,

48-3


http://rsta.royalsocietypublishing.org/

|
A

o
L

J

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

2 ¥

A Y
Iam \
P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

604 G.S.JOYCE

In equation (8.4) the constant J is twice the nearest neighbour exchange integral, and kg is the
Boltzmann constant.

The low-temperature behaviour of the relative magnetization may be investigated by first
writing the thermal Green function (8.2) in the alternative form?

D) = 3 eI, (3n)]". (8.5)
n=1
We can now substitute the dominant asymptotic expansion
I - )
0P ~ (55) o £ g as 5o, (5.6)
in equation (8.5), where the coeflicients are defined by the formal identity
) 2 3 ]
[ s G (%)“x—"] = 5 g (8.7)
n=0 N: n=0
This procedure yields the basic low-temperature expansion
3\{ 2
~ | — 3 —n
o) ~ (55) E eutlat D, (89)

where ¢(x) denotes the Riemann zeta function.
In order to establish a connexion between the above analysis and the lattice Green function
G(t) we next introduce the Laplace transform

6) = [ etinad, (8.9)

where Re (¢) > 3. Using this integral and equation (8.6), Maradudin ez al. (1960) have shown
that the behaviour of G(¢) in the neighbourhood of the branch-point ¢ = 3 is described by an
analytic continuation of the form

6) = 3 ent=3" =5 T A= (|t=3] <2), (5.10)
where Jn = (3; ()j;%’ (8.11)

However, we can also derive the analytic continuation (8.10) by applying the method of
Frobenius to the regular singular point ¢ = 3 of the differential equation (2.18). This alternative
procedure leads to the following recurrence relation for the coefficient f,:
96(n+1) (2n+1) (2n+3) f,,1+8(2n+1) (220> + 22n+9) f,
2n(dn+ 1) fy 4+ (2= 1), = 0 (n 3 0) (8.12)
with the initial conditions f, = 1, and f_, = f_, = 0.

If we substitute equation (8.11) in equation (8.12) we readily find that the coefficients in the
ideal spin wave expansion (8.8) satisfy the recurrence relation
266(n+1)g,,1—32(22n%+22n+9) g, + 14dn(4n*+1) g, 1 —9(2n—1)%g, o =0 (n > 0), (8.13)
with the initial conditions g, = 1 and g_, = g_, = 0. A list of the coeflicients g,, which was

generated by using (8.13), is given in table 7.

1 A detailed derivation of (8.5) is given in Mattis (1965), p. 246.
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TaBLE 7. COEFFICIENTS g,, IN THE SPIN WAVE EXPANSION (8.8)

n &n
0 1
9
1 z
8
9 297
128
7 587
3 —
1024
4 1 086 939
32768
51 064 263
5 -
262 144
6 5995 159 677
4 194 304
. 423 959 714 955
33 554 432

281 014 370 213 715

8 2 147 483 648
9 26 702 465 299 878 195
17 179 869 184
10 5723 872 792 950 096 855

274 877 906 944

It should be stressed that the higher-order coeflicients gy, g,, ... are of little physical interest,
since the interactions between spin waves (Dyson 19564, b) give rise to contributions to equation
(8.1) of order a—*. However, the results derived above for the function @(«) are of mathematical
interest in nonlinear spin wave theory (Mattis 1965), and in the various Green function theories
of ferromagnetism (Tahir-Kheli & ter Haar 1962; Callen 1963; Dalton & Wood 1967; Flax &
Raich 1969). Finally, we note that the ideal spin-wave coeflicients for the body-centred cubic
lattice also satisfy a four-term recurrence relation (see Joyce (19714), p. 1397, equation (3.28))
which is very similar to (8.13).

: (b) Theory of random walks

The analytic continuation (4.6) of the probability generating function P(z) has numerous
applications in the theory of random walks (Montroll & Weiss 1965; Domb & Joyce 1972). In
the present section we shall use (4.6) to derive an asymptotic expansion for the expected number
S, of distinct lattice sites visited during an n-step random walk on a simple cubic lattice (Dvoretzky
& Erdos 1951; Vineyard 1963; Montroll & Weiss 1965). (Further applications of (4.6) in the
theory of random walks will be discussed elsewhere.)

We begin by considering the generating function (Montroll & Weiss 1965)

b 1 11
Sz) = 3 8,20 = (1—2)[P(2)] = 1 + 2241 2y 1L 0 10T 4 21 5
= R N YR
23407 13201 234755 43049 °

6 7 8
3888 ° ' 1944 ° " 31104 - T 5isa Z T

(8.14)
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This function has two singularities on the circle of convergence |z| = 1, atz = + 1. The behaviour
of §(z) in the neighbourhood of the singularity at z = 1 may be established by inverting equation
(4.6). The final result is

8(z) = [P(] [(1—2)“2+§;/—A§(1—2)‘%+ (18— ) (1—2)—1+fg£63(18—412) (1—z)4
2 4 6 € ¢ 4
+ e (1200 — 24342 — 1144) + 25‘40115(131 220 — 30944) (1—2)%+...], (8.15)

where 4 = =nP(1). In the neighbourhood of the singularity z = — 1, we find
S(z) = H[P(1)]7[1+(34/6/24) (1 +2)E+...]. (8.16)

The application of the method of Darboux (1878) to the singular parts of (8.15) and (8.16)
yields the asymptotic expansion

3(6)\} 9 [ 6\}
S~ [P(1 )]"171{14-2]-( ) A 5 (162 +74%)n —1+16A3< ) (18 + A?)
2 4 4
0120/_15( ) [131220 + 648042 + 17144+ (—)"9604 ]+...}, (8.17)
as n—>o00. It is readily seen that, in general, the ‘weak’ cusp singularity at z = —1 gives rise to

contributions to the expansion (8.17) of the type ( —)"/um*}, with m = 0, 1,2, .... Similar asymp-
totic formulae for S, have also been derived for the body-centred and face-centred cubic lattices

(Joyce 19714, b).
(¢) Spherical model

The analytic continuation (4.6) is of basic importance in the spherical model of ferromagnetism
(Berlin & Kac 1952) since it enables one to determine the detailed critical behaviour of the model
(Joyce 19724) as the temperature T—T¢ +, where T¢ is the Curie temperature. In order to
illustrate this application we shall now investigate the critical behaviour of the zero-field
isothermal susceptibility y of the spherical model on a simple cubic lattice.

It can be shown (Berlin & Kac 1952) that the susceptibility y for the simple cubic lattice is

given by
(kp T[m®) x = K= (&s— )7+ (T'> To), (8.18)

where K = 6J, kg T, and m is the magnetic moment of each ‘spin’ in the system. The ‘saddle-
point’ parameter £ is determined as a function of K from the implicit saddle-point equation

dx, dx,dx
1 1-42-73
K = §1P(E) T fff &5 — §(cos %y + cos x5 + cOS X3)

= §;1n§0an£;?” (|&s] = 1), (8.19)

where the coefficients a,, satisfy the recurrence relation (2.14). We see from (8.19) that at very
high temperatures the parameter &5 is positive with £s ~ K%, and that as the temperature is
lowered £ decreases monotonically, When the saddle-point parameter £ coincides with the
branch point £ = 1 a phase transition occurs at a Curie temperature given by

K. = 6J/ky T = P(1). | (8.20)
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An analysis of the saddle-point equation in the critical region &5 X 1 can be carried out using
the expansion (4.6). After some manipulation we find

3.6 7K. 27
(Ke=K) = 502 (60 )1+ (e g5 ) (6= 1)+ OL(Ea— 11 (3.21)
We next revert this expansion and substitute the resulting formula for £ — 1 in equation (8.18).
This procedure yields
(s Tfm?) x = CHE¥)=2(14+46%) + (1), (8.22)
as t¥ -0+, where
t* = 1— (K[K,), (8.23)
Ct = (27/2n%) K3, (8.24)
and A = (1/108) (54 + Tn2K3). (8.25)

If the reversion of the series in (8.19) is used to eliminate &g from the expression (8.18) we
obtain the following high-temperature series for the susceptibility (Dalton & Wood 1968;
Stanley 1969; Joyce 19724a):

(s T ¥ = 3 cuK" = 14 6(3K) + 30(3K)*+ 144(3K)?+ 666(}K)*

+3024(3K)5+ 13 476(3K)® + 59 328(3K)7
+258 854(4K)8 + 1 115 856(1K)? + 4784 508(4K)10
+20393856(4K)!1 4 86473 548(3K)12+ ... (8.26)

This series expansion displays just one singularity on its circle of convergence at K = K, and
does not have an antiferromagnetic singularity at K = — K. Outside the circle of convergence
|K| = Ke, the analytic continuation of the scries (8.26) also exhibits non-physical branch-point
singularitiest at K = + K, where K, ~ 1.9398 1075.

It is clear, therefore, that the dominant asymptotic behaviour of the coefficients ¢, can be
determined by applying Darboux’s theorem (1878) to equation (8.22). We find

€y~ CHn+A+1)Kg™ as n—>o0. (8.27)

The non-physical singularities at K = + K, contribute an additional factor to (8.27) of the form
1+ O{(K¢/K,)"}. Since this factor approaches 1 exponentially fast as n—>o00, we see that the
effect of the singularities at + K, will become negligible, providing nis sufficiently large. It follows
from (8.27) that the asymptotic behaviour of the ratio of terms ¢,/c,_; is described by the simple
representation _

Cnftn—z ~ K14 (n+A)"1], (8.28)

as n->00. The asymptotic formula (8.27) is also formally valid for most other three-dimensional
lattices with isotropic ferromagnetic interactions. (In general we define K = ¢J/kg T where ¢ is
the coordination number of the lattice.) However, the susceptibility series for the diamond
lattice (Joyce 19724) with nearest neighbour interactions has two ‘weak’ non-physical branch-
point singularities on the circle of convergence at K = +iK,, where K, is less than K.. Under
these circumstances it is evident that an asymptotic formula of the type (8.27) no longer holds.

+ A more detailed discussion of these non-physical singularities is given in Joyce (19724).
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(d) Lattice dynamics

The lattice dynamics of a set of N3 identical particles which interact with nearest neighbour
interactions on an N x N x N simple cubic lattice has been investigated in considerable detail
by Montroll (1956). In particular, he showed that for large N the frequency spectrum g(v) of
the model can be written in the form

g(v) = 4nw N3G (yy, 75, v33 07), (8.29)
where

N 1 [
G717 V35 %) = ;JO cos [(w? — 2y; — 2y, — 273) &] Jy(2y1%) Jy(272%) Jy(275%) de, (8.30)

o = 27y, and the parameter y, denotes the central force constant while 7y,, y; represent the non-
central force constants. The maximum ‘cut-ofl” frequency for the model is given by

0} = 4(y1+Ya+Vs)- (8.31)

If we restrict our attention to the special case y, = y, = 73 = v and compare (8.30) with the
standard integral representation (Koster & Slater 1954; Wolfram & Callaway 1963)

Gyls) = f ” cos (sx) [y (#)]? dx, (8.32)
0
we obtain the basic relation
w7, G(7,7,7;0%) = (6[x) Gi(s), (8.33)
where s =3[1-2(0wfw;)?], (8.34)

and % = 12y. We see therefore that the transformation formulae given in §5 enable one to
carry out a complete analysis of the spectral density function G(y, 7, y; w?). The low-frequency
expansion for G(y, v, v; w?) may be readily derived by applying (8.10) to (8.33). It is found that

N 3 2n
2 G e m2) = «/ 2 < 2
w7y, (7> 7: 7:(‘) ) Tcg (wj)nzo ( ) (wL) (w < %(UL), (8~35)
where the ‘spin-wave’ coeflicients g, satisfy the four-term recurrence relation (8.13).

Finally, we note that the Green function Gy(s) is also directly related to the density of states
in spin-wave theory and in the tight-binding approximation for electrons.

9. CONCLUDING REMARKS

The results derived in the previous sections provide us with a fairly complete picture of the
analytical properties of the Green’s function G(t). However, there are still many associated
mathematical problems which remain unresolved. For example, it may be possible to express
Gy (s) and Gi(s) in terms of complete elliptic integrals for sin the ranges 0 < s < tand 1 < s < 3.
More generally, one might now optimistically expect that the complete Green’s function

Lta) = WaJ’J‘J'O o8 {3 %, COS [y x4 COS I3 X5 dxy dy g (9.1)

¢ — (Cos X1 + COS Xy + 0L COS Xg)

for the anisotropic simple cubic lattice can be evaluated in terms of complete elliptic integrals.
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The special case G(0; ¢, «) is particularly intriguing since Montroll (1956) has already shown that

G(0;2+a,a) = (4/m%d) [(y + 1) — (y — 1)¥] K(k,) K (k), (9.2)
where - Db (r= [+ Di—(y - D4,
v = (44 3a)/a. (9.3)

It is hoped to discuss these problems in future publications.

I am extremely grateful to Dr A. J. Guttmann for several stimulating discussions and for
assistance in the initial stages of this work, particularly in the derivation of the basic recurrence
relation (2.15). I also thank Professor C. Domb and Dr D. S. Gaunt for their interest and
encouragement. Finally, I am indebted to J. A. Webb for expert programming assistance.

APPENDIX

Below is given a short table of values for the real part Gy (s) and the imaginary part Gy(s) of

the Green function
hm L dx, dx, dag
04 T o §—1€— (Cos x; + COS X, + COS ¥3)

in the range 0 < s < 3.
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5 Gr(s) Gi(s)

0 0 0.896 440 788 776 763
0.1 0.036 837 303 222 745 0.896 562 114 473 980
0.2 0.074 175 844 749 651 0.896 926 772 749 037
0.3 0.112 564 301 852 041 0.897 536 820 366 793
0.4 0.152 659 626 011 071 0.898 395 729 875 683
0.5 0.195 322 880 928 494 0.899 508 458 513 518
0.6 0.241 797 659 193 004 0.900 881 548 820 933
0.7 0.294 101 634 298 992 0.902 523 265 487 469
0.8 0.356 090 544 780 607 0.904 443 774 841 813
0.9 0.437 633 958 796 167 0.906 655 375 828 984
1.0 0.642 882 248 294 458 0.909 172 794 546 930
1.1 0.633 184 743 623 919 0.700 154 316 589 861
1.2 0.623 923 540 314 459 0.617 640 713 783 929
1.3 0.615 064 356 547 705 0.556 473 298 337 678
1.4 0.606 576 783 898 185 0.506 448 945 066 514
1.5 0.598 433 718 602 123 0.463 544 765 191 000
1.6 0.590 610 894 805 526 0.425 656 571 021 183
1.7 0.583 086 498 372 508 0.391 505 200 745 014
1.8 0.575 840 844 951 127 0.360 232 899 869 855
1.9 0.568 856 109 750 251 0.331 220 782 139 748
2.0 0.562 116 099 272 940 0.303 993 825 678 427
2.1 0.555 606 057 350 799 0.278 165 263 291 800
2.2 0.549 312 499 418 529 0.253 399 689 591 420
2.3 0.543 223 070 191 414 0.229 384 167 638 284
2.4 0.537 326 420 855 799 0.205 799 773 412 628
2.5 0.531 612 102 622 276 0.182 284 855 335 886
2.6 0.526 070 474 073 471 0.158 373 626 234 242
2.7 0.520 692 620 199 918 0.133 367 106 772 626
2.8 0.515 470 281 386 060 0.105 986 195 066 048
2.9 0.510 395 790 904 645 0.073 006 133 685 561
3.0 0.505 462 019 717 326 0
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